libgig  3.3.0.svn4
gig.cpp
Go to the documentation of this file.
1 /***************************************************************************
2  * *
3  * libgig - C++ cross-platform Gigasampler format file access library *
4  * *
5  * Copyright (C) 2003-2013 by Christian Schoenebeck *
6  * <cuse@users.sourceforge.net> *
7  * *
8  * This library is free software; you can redistribute it and/or modify *
9  * it under the terms of the GNU General Public License as published by *
10  * the Free Software Foundation; either version 2 of the License, or *
11  * (at your option) any later version. *
12  * *
13  * This library is distributed in the hope that it will be useful, *
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16  * GNU General Public License for more details. *
17  * *
18  * You should have received a copy of the GNU General Public License *
19  * along with this library; if not, write to the Free Software *
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21  * MA 02111-1307 USA *
22  ***************************************************************************/
23 
24 #include "gig.h"
25 
26 #include "helper.h"
27 
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31 
37 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38 
40 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52 
53 namespace gig {
54 
55 // *************** progress_t ***************
56 // *
57 
59  callback = NULL;
60  custom = NULL;
61  __range_min = 0.0f;
62  __range_max = 1.0f;
63  }
64 
65  // private helper function to convert progress of a subprocess into the global progress
66  static void __notify_progress(progress_t* pProgress, float subprogress) {
67  if (pProgress && pProgress->callback) {
68  const float totalrange = pProgress->__range_max - pProgress->__range_min;
69  const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70  pProgress->factor = totalprogress;
71  pProgress->callback(pProgress); // now actually notify about the progress
72  }
73  }
74 
75  // private helper function to divide a progress into subprogresses
76  static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77  if (pParentProgress && pParentProgress->callback) {
78  const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79  pSubProgress->callback = pParentProgress->callback;
80  pSubProgress->custom = pParentProgress->custom;
81  pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82  pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83  }
84  }
85 
86 
87 // *************** Internal functions for sample decompression ***************
88 // *
89 
90 namespace {
91 
92  inline int get12lo(const unsigned char* pSrc)
93  {
94  const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95  return x & 0x800 ? x - 0x1000 : x;
96  }
97 
98  inline int get12hi(const unsigned char* pSrc)
99  {
100  const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101  return x & 0x800 ? x - 0x1000 : x;
102  }
103 
104  inline int16_t get16(const unsigned char* pSrc)
105  {
106  return int16_t(pSrc[0] | pSrc[1] << 8);
107  }
108 
109  inline int get24(const unsigned char* pSrc)
110  {
111  const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112  return x & 0x800000 ? x - 0x1000000 : x;
113  }
114 
115  inline void store24(unsigned char* pDst, int x)
116  {
117  pDst[0] = x;
118  pDst[1] = x >> 8;
119  pDst[2] = x >> 16;
120  }
121 
122  void Decompress16(int compressionmode, const unsigned char* params,
123  int srcStep, int dstStep,
124  const unsigned char* pSrc, int16_t* pDst,
125  unsigned long currentframeoffset,
126  unsigned long copysamples)
127  {
128  switch (compressionmode) {
129  case 0: // 16 bit uncompressed
130  pSrc += currentframeoffset * srcStep;
131  while (copysamples) {
132  *pDst = get16(pSrc);
133  pDst += dstStep;
134  pSrc += srcStep;
135  copysamples--;
136  }
137  break;
138 
139  case 1: // 16 bit compressed to 8 bit
140  int y = get16(params);
141  int dy = get16(params + 2);
142  while (currentframeoffset) {
143  dy -= int8_t(*pSrc);
144  y -= dy;
145  pSrc += srcStep;
146  currentframeoffset--;
147  }
148  while (copysamples) {
149  dy -= int8_t(*pSrc);
150  y -= dy;
151  *pDst = y;
152  pDst += dstStep;
153  pSrc += srcStep;
154  copysamples--;
155  }
156  break;
157  }
158  }
159 
160  void Decompress24(int compressionmode, const unsigned char* params,
161  int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162  unsigned long currentframeoffset,
163  unsigned long copysamples, int truncatedBits)
164  {
165  int y, dy, ddy, dddy;
166 
167 #define GET_PARAMS(params) \
168  y = get24(params); \
169  dy = y - get24((params) + 3); \
170  ddy = get24((params) + 6); \
171  dddy = get24((params) + 9)
172 
173 #define SKIP_ONE(x) \
174  dddy -= (x); \
175  ddy -= dddy; \
176  dy = -dy - ddy; \
177  y += dy
178 
179 #define COPY_ONE(x) \
180  SKIP_ONE(x); \
181  store24(pDst, y << truncatedBits); \
182  pDst += dstStep
183 
184  switch (compressionmode) {
185  case 2: // 24 bit uncompressed
186  pSrc += currentframeoffset * 3;
187  while (copysamples) {
188  store24(pDst, get24(pSrc) << truncatedBits);
189  pDst += dstStep;
190  pSrc += 3;
191  copysamples--;
192  }
193  break;
194 
195  case 3: // 24 bit compressed to 16 bit
196  GET_PARAMS(params);
197  while (currentframeoffset) {
198  SKIP_ONE(get16(pSrc));
199  pSrc += 2;
200  currentframeoffset--;
201  }
202  while (copysamples) {
203  COPY_ONE(get16(pSrc));
204  pSrc += 2;
205  copysamples--;
206  }
207  break;
208 
209  case 4: // 24 bit compressed to 12 bit
210  GET_PARAMS(params);
211  while (currentframeoffset > 1) {
212  SKIP_ONE(get12lo(pSrc));
213  SKIP_ONE(get12hi(pSrc));
214  pSrc += 3;
215  currentframeoffset -= 2;
216  }
217  if (currentframeoffset) {
218  SKIP_ONE(get12lo(pSrc));
219  currentframeoffset--;
220  if (copysamples) {
221  COPY_ONE(get12hi(pSrc));
222  pSrc += 3;
223  copysamples--;
224  }
225  }
226  while (copysamples > 1) {
227  COPY_ONE(get12lo(pSrc));
228  COPY_ONE(get12hi(pSrc));
229  pSrc += 3;
230  copysamples -= 2;
231  }
232  if (copysamples) {
233  COPY_ONE(get12lo(pSrc));
234  }
235  break;
236 
237  case 5: // 24 bit compressed to 8 bit
238  GET_PARAMS(params);
239  while (currentframeoffset) {
240  SKIP_ONE(int8_t(*pSrc++));
241  currentframeoffset--;
242  }
243  while (copysamples) {
244  COPY_ONE(int8_t(*pSrc++));
245  copysamples--;
246  }
247  break;
248  }
249  }
250 
251  const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252  const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253  const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254  const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255 }
256 
257 
258 
259 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260 // *
261 
262  static uint32_t* __initCRCTable() {
263  static uint32_t res[256];
264 
265  for (int i = 0 ; i < 256 ; i++) {
266  uint32_t c = i;
267  for (int j = 0 ; j < 8 ; j++) {
268  c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269  }
270  res[i] = c;
271  }
272  return res;
273  }
274 
275  static const uint32_t* __CRCTable = __initCRCTable();
276 
282  inline static void __resetCRC(uint32_t& crc) {
283  crc = 0xffffffff;
284  }
285 
305  static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306  for (int i = 0 ; i < bufSize ; i++) {
307  crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308  }
309  }
310 
316  inline static uint32_t __encodeCRC(const uint32_t& crc) {
317  return crc ^ 0xffffffff;
318  }
319 
320 
321 
322 // *************** Other Internal functions ***************
323 // *
324 
325  static split_type_t __resolveSplitType(dimension_t dimension) {
326  return (
327  dimension == dimension_layer ||
328  dimension == dimension_samplechannel ||
329  dimension == dimension_releasetrigger ||
330  dimension == dimension_keyboard ||
331  dimension == dimension_roundrobin ||
332  dimension == dimension_random ||
333  dimension == dimension_smartmidi ||
334  dimension == dimension_roundrobinkeyboard
336  }
337 
338  static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339  return (dimension_definition.split_type == split_type_normal)
340  ? int(128.0 / dimension_definition.zones) : 0;
341  }
342 
343 
344 
345 // *************** Sample ***************
346 // *
347 
348  unsigned int Sample::Instances = 0;
350 
369  Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370  static const DLS::Info::string_length_t fixedStringLengths[] = {
371  { CHUNK_ID_INAM, 64 },
372  { 0, 0 }
373  };
374  pInfo->SetFixedStringLengths(fixedStringLengths);
375  Instances++;
376  FileNo = fileNo;
377 
378  __resetCRC(crc);
379 
380  pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381  if (pCk3gix) {
382  uint16_t iSampleGroup = pCk3gix->ReadInt16();
383  pGroup = pFile->GetGroup(iSampleGroup);
384  } else { // '3gix' chunk missing
385  // by default assigned to that mandatory "Default Group"
386  pGroup = pFile->GetGroup(0);
387  }
388 
389  pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390  if (pCkSmpl) {
396  pCkSmpl->Read(&SMPTEFormat, 1, 4);
398  Loops = pCkSmpl->ReadInt32();
399  pCkSmpl->ReadInt32(); // manufByt
400  LoopID = pCkSmpl->ReadInt32();
401  pCkSmpl->Read(&LoopType, 1, 4);
406  } else { // 'smpl' chunk missing
407  // use default values
408  Manufacturer = 0;
409  Product = 0;
410  SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411  MIDIUnityNote = 60;
412  FineTune = 0;
414  SMPTEOffset = 0;
415  Loops = 0;
416  LoopID = 0;
418  LoopStart = 0;
419  LoopEnd = 0;
420  LoopFraction = 0;
421  LoopPlayCount = 0;
422  }
423 
424  FrameTable = NULL;
425  SamplePos = 0;
426  RAMCache.Size = 0;
427  RAMCache.pStart = NULL;
429 
430  if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431 
432  RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433  Compressed = ewav;
434  Dithered = false;
435  TruncatedBits = 0;
436  if (Compressed) {
437  uint32_t version = ewav->ReadInt32();
438  if (version == 3 && BitDepth == 24) {
439  Dithered = ewav->ReadInt32();
440  ewav->SetPos(Channels == 2 ? 84 : 64);
441  TruncatedBits = ewav->ReadInt32();
442  }
443  ScanCompressedSample();
444  }
445 
446  // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
450  }
451  FrameOffset = 0; // just for streaming compressed samples
452 
453  LoopSize = LoopEnd - LoopStart + 1;
454  }
455 
468  // first update base class's chunks
470 
471  // make sure 'smpl' chunk exists
473  if (!pCkSmpl) {
475  memset(pCkSmpl->LoadChunkData(), 0, 60);
476  }
477  // update 'smpl' chunk
478  uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479  SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480  store32(&pData[0], Manufacturer);
481  store32(&pData[4], Product);
482  store32(&pData[8], SamplePeriod);
483  store32(&pData[12], MIDIUnityNote);
484  store32(&pData[16], FineTune);
485  store32(&pData[20], SMPTEFormat);
486  store32(&pData[24], SMPTEOffset);
487  store32(&pData[28], Loops);
488 
489  // we skip 'manufByt' for now (4 bytes)
490 
491  store32(&pData[36], LoopID);
492  store32(&pData[40], LoopType);
493  store32(&pData[44], LoopStart);
494  store32(&pData[48], LoopEnd);
495  store32(&pData[52], LoopFraction);
496  store32(&pData[56], LoopPlayCount);
497 
498  // make sure '3gix' chunk exists
501  // determine appropriate sample group index (to be stored in chunk)
502  uint16_t iSampleGroup = 0; // 0 refers to default sample group
503  File* pFile = static_cast<File*>(pParent);
504  if (pFile->pGroups) {
505  std::list<Group*>::iterator iter = pFile->pGroups->begin();
506  std::list<Group*>::iterator end = pFile->pGroups->end();
507  for (int i = 0; iter != end; i++, iter++) {
508  if (*iter == pGroup) {
509  iSampleGroup = i;
510  break; // found
511  }
512  }
513  }
514  // update '3gix' chunk
515  pData = (uint8_t*) pCk3gix->LoadChunkData();
516  store16(&pData[0], iSampleGroup);
517  }
518 
520  void Sample::ScanCompressedSample() {
521  //TODO: we have to add some more scans here (e.g. determine compression rate)
522  this->SamplesTotal = 0;
523  std::list<unsigned long> frameOffsets;
524 
525  SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526  WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527 
528  // Scanning
529  pCkData->SetPos(0);
530  if (Channels == 2) { // Stereo
531  for (int i = 0 ; ; i++) {
532  // for 24 bit samples every 8:th frame offset is
533  // stored, to save some memory
534  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535 
536  const int mode_l = pCkData->ReadUint8();
537  const int mode_r = pCkData->ReadUint8();
538  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540 
541  if (pCkData->RemainingBytes() <= frameSize) {
543  ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544  (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
546  break;
547  }
549  pCkData->SetPos(frameSize, RIFF::stream_curpos);
550  }
551  }
552  else { // Mono
553  for (int i = 0 ; ; i++) {
554  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555 
556  const int mode = pCkData->ReadUint8();
557  if (mode > 5) throw gig::Exception("Unknown compression mode");
558  const unsigned long frameSize = bytesPerFrame[mode];
559 
560  if (pCkData->RemainingBytes() <= frameSize) {
562  ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
564  break;
565  }
567  pCkData->SetPos(frameSize, RIFF::stream_curpos);
568  }
569  }
570  pCkData->SetPos(0);
571 
572  // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573  if (FrameTable) delete[] FrameTable;
574  FrameTable = new unsigned long[frameOffsets.size()];
575  std::list<unsigned long>::iterator end = frameOffsets.end();
576  std::list<unsigned long>::iterator iter = frameOffsets.begin();
577  for (int i = 0; iter != end; i++, iter++) {
578  FrameTable[i] = *iter;
579  }
580  }
581 
592  return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
593  }
594 
617  buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
618  return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
619  }
620 
641  return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
642  }
643 
676  buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
677  if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678  if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679  unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680  SetPos(0); // reset read position to begin of sample
681  RAMCache.pStart = new int8_t[allocationsize];
682  RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
683  RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
684  // fill the remaining buffer space with silence samples
685  memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
686  return GetCache();
687  }
688 
700  // return a copy of the buffer_t structure
701  buffer_t result;
702  result.Size = this->RAMCache.Size;
703  result.pStart = this->RAMCache.pStart;
705  return result;
706  }
707 
715  if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
716  RAMCache.pStart = NULL;
717  RAMCache.Size = 0;
719  }
720 
751  void Sample::Resize(int iNewSize) {
752  if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
753  DLS::Sample::Resize(iNewSize);
754  }
755 
777  unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
778  if (Compressed) {
779  switch (Whence) {
780  case RIFF::stream_curpos:
781  this->SamplePos += SampleCount;
782  break;
783  case RIFF::stream_end:
784  this->SamplePos = this->SamplesTotal - 1 - SampleCount;
785  break;
787  this->SamplePos -= SampleCount;
788  break;
789  case RIFF::stream_start: default:
790  this->SamplePos = SampleCount;
791  break;
792  }
793  if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
794 
795  unsigned long frame = this->SamplePos / 2048; // to which frame to jump
796  this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
797  pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
798  return this->SamplePos;
799  }
800  else { // not compressed
801  unsigned long orderedBytes = SampleCount * this->FrameSize;
802  unsigned long result = pCkData->SetPos(orderedBytes, Whence);
803  return (result == orderedBytes) ? SampleCount
804  : result / this->FrameSize;
805  }
806  }
807 
811  unsigned long Sample::GetPos() {
812  if (Compressed) return SamplePos;
813  else return pCkData->GetPos() / FrameSize;
814  }
815 
850  unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
851  DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
852  unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
853  uint8_t* pDst = (uint8_t*) pBuffer;
854 
855  SetPos(pPlaybackState->position); // recover position from the last time
856 
857  if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
858 
859  const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
860  const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
861 
862  if (GetPos() <= loopEnd) {
863  switch (loop.LoopType) {
864 
865  case loop_type_bidirectional: { //TODO: not tested yet!
866  do {
867  // if not endless loop check if max. number of loop cycles have been passed
868  if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
869 
870  if (!pPlaybackState->reverse) { // forward playback
871  do {
872  samplestoloopend = loopEnd - GetPos();
873  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
874  samplestoread -= readsamples;
875  totalreadsamples += readsamples;
876  if (readsamples == samplestoloopend) {
877  pPlaybackState->reverse = true;
878  break;
879  }
880  } while (samplestoread && readsamples);
881  }
882  else { // backward playback
883 
884  // as we can only read forward from disk, we have to
885  // determine the end position within the loop first,
886  // read forward from that 'end' and finally after
887  // reading, swap all sample frames so it reflects
888  // backward playback
889 
890  unsigned long swapareastart = totalreadsamples;
891  unsigned long loopoffset = GetPos() - loop.LoopStart;
892  unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
893  unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
894 
895  SetPos(reverseplaybackend);
896 
897  // read samples for backward playback
898  do {
899  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
900  samplestoreadinloop -= readsamples;
901  samplestoread -= readsamples;
902  totalreadsamples += readsamples;
903  } while (samplestoreadinloop && readsamples);
904 
905  SetPos(reverseplaybackend); // pretend we really read backwards
906 
907  if (reverseplaybackend == loop.LoopStart) {
908  pPlaybackState->loop_cycles_left--;
909  pPlaybackState->reverse = false;
910  }
911 
912  // reverse the sample frames for backward playback
913  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
914  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
915  }
916  } while (samplestoread && readsamples);
917  break;
918  }
919 
920  case loop_type_backward: { // TODO: not tested yet!
921  // forward playback (not entered the loop yet)
922  if (!pPlaybackState->reverse) do {
923  samplestoloopend = loopEnd - GetPos();
924  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
925  samplestoread -= readsamples;
926  totalreadsamples += readsamples;
927  if (readsamples == samplestoloopend) {
928  pPlaybackState->reverse = true;
929  break;
930  }
931  } while (samplestoread && readsamples);
932 
933  if (!samplestoread) break;
934 
935  // as we can only read forward from disk, we have to
936  // determine the end position within the loop first,
937  // read forward from that 'end' and finally after
938  // reading, swap all sample frames so it reflects
939  // backward playback
940 
941  unsigned long swapareastart = totalreadsamples;
942  unsigned long loopoffset = GetPos() - loop.LoopStart;
943  unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
944  : samplestoread;
945  unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
946 
947  SetPos(reverseplaybackend);
948 
949  // read samples for backward playback
950  do {
951  // if not endless loop check if max. number of loop cycles have been passed
952  if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
953  samplestoloopend = loopEnd - GetPos();
954  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
955  samplestoreadinloop -= readsamples;
956  samplestoread -= readsamples;
957  totalreadsamples += readsamples;
958  if (readsamples == samplestoloopend) {
959  pPlaybackState->loop_cycles_left--;
960  SetPos(loop.LoopStart);
961  }
962  } while (samplestoreadinloop && readsamples);
963 
964  SetPos(reverseplaybackend); // pretend we really read backwards
965 
966  // reverse the sample frames for backward playback
967  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
968  break;
969  }
970 
971  default: case loop_type_normal: {
972  do {
973  // if not endless loop check if max. number of loop cycles have been passed
974  if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
975  samplestoloopend = loopEnd - GetPos();
976  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
977  samplestoread -= readsamples;
978  totalreadsamples += readsamples;
979  if (readsamples == samplestoloopend) {
980  pPlaybackState->loop_cycles_left--;
981  SetPos(loop.LoopStart);
982  }
983  } while (samplestoread && readsamples);
984  break;
985  }
986  }
987  }
988  }
989 
990  // read on without looping
991  if (samplestoread) do {
992  readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
993  samplestoread -= readsamples;
994  totalreadsamples += readsamples;
995  } while (readsamples && samplestoread);
996 
997  // store current position
998  pPlaybackState->position = GetPos();
999 
1000  return totalreadsamples;
1001  }
1002 
1025  unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1026  if (SampleCount == 0) return 0;
1027  if (!Compressed) {
1028  if (BitDepth == 24) {
1029  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1030  }
1031  else { // 16 bit
1032  // (pCkData->Read does endian correction)
1033  return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1034  : pCkData->Read(pBuffer, SampleCount, 2);
1035  }
1036  }
1037  else {
1038  if (this->SamplePos >= this->SamplesTotal) return 0;
1039  //TODO: efficiency: maybe we should test for an average compression rate
1040  unsigned long assumedsize = GuessSize(SampleCount),
1041  remainingbytes = 0, // remaining bytes in the local buffer
1042  remainingsamples = SampleCount,
1043  copysamples, skipsamples,
1044  currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1045  this->FrameOffset = 0;
1046 
1047  buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1048 
1049  // if decompression buffer too small, then reduce amount of samples to read
1050  if (pDecompressionBuffer->Size < assumedsize) {
1051  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1052  SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1053  remainingsamples = SampleCount;
1054  assumedsize = GuessSize(SampleCount);
1055  }
1056 
1057  unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1058  int16_t* pDst = static_cast<int16_t*>(pBuffer);
1059  uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1060  remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1061 
1062  while (remainingsamples && remainingbytes) {
1063  unsigned long framesamples = SamplesPerFrame;
1064  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1065 
1066  int mode_l = *pSrc++, mode_r = 0;
1067 
1068  if (Channels == 2) {
1069  mode_r = *pSrc++;
1070  framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1071  rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1072  nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1073  if (remainingbytes < framebytes) { // last frame in sample
1074  framesamples = SamplesInLastFrame;
1075  if (mode_l == 4 && (framesamples & 1)) {
1076  rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1077  }
1078  else {
1079  rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1080  }
1081  }
1082  }
1083  else {
1084  framebytes = bytesPerFrame[mode_l] + 1;
1085  nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1086  if (remainingbytes < framebytes) {
1087  framesamples = SamplesInLastFrame;
1088  }
1089  }
1090 
1091  // determine how many samples in this frame to skip and read
1092  if (currentframeoffset + remainingsamples >= framesamples) {
1093  if (currentframeoffset <= framesamples) {
1094  copysamples = framesamples - currentframeoffset;
1095  skipsamples = currentframeoffset;
1096  }
1097  else {
1098  copysamples = 0;
1099  skipsamples = framesamples;
1100  }
1101  }
1102  else {
1103  // This frame has enough data for pBuffer, but not
1104  // all of the frame is needed. Set file position
1105  // to start of this frame for next call to Read.
1106  copysamples = remainingsamples;
1107  skipsamples = currentframeoffset;
1108  pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1109  this->FrameOffset = currentframeoffset + copysamples;
1110  }
1111  remainingsamples -= copysamples;
1112 
1113  if (remainingbytes > framebytes) {
1114  remainingbytes -= framebytes;
1115  if (remainingsamples == 0 &&
1116  currentframeoffset + copysamples == framesamples) {
1117  // This frame has enough data for pBuffer, and
1118  // all of the frame is needed. Set file
1119  // position to start of next frame for next
1120  // call to Read. FrameOffset is 0.
1121  pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1122  }
1123  }
1124  else remainingbytes = 0;
1125 
1126  currentframeoffset -= skipsamples;
1127 
1128  if (copysamples == 0) {
1129  // skip this frame
1130  pSrc += framebytes - Channels;
1131  }
1132  else {
1133  const unsigned char* const param_l = pSrc;
1134  if (BitDepth == 24) {
1135  if (mode_l != 2) pSrc += 12;
1136 
1137  if (Channels == 2) { // Stereo
1138  const unsigned char* const param_r = pSrc;
1139  if (mode_r != 2) pSrc += 12;
1140 
1141  Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1142  skipsamples, copysamples, TruncatedBits);
1143  Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1144  skipsamples, copysamples, TruncatedBits);
1145  pDst24 += copysamples * 6;
1146  }
1147  else { // Mono
1148  Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1149  skipsamples, copysamples, TruncatedBits);
1150  pDst24 += copysamples * 3;
1151  }
1152  }
1153  else { // 16 bit
1154  if (mode_l) pSrc += 4;
1155 
1156  int step;
1157  if (Channels == 2) { // Stereo
1158  const unsigned char* const param_r = pSrc;
1159  if (mode_r) pSrc += 4;
1160 
1161  step = (2 - mode_l) + (2 - mode_r);
1162  Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1163  Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1164  skipsamples, copysamples);
1165  pDst += copysamples << 1;
1166  }
1167  else { // Mono
1168  step = 2 - mode_l;
1169  Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1170  pDst += copysamples;
1171  }
1172  }
1173  pSrc += nextFrameOffset;
1174  }
1175 
1176  // reload from disk to local buffer if needed
1177  if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1178  assumedsize = GuessSize(remainingsamples);
1179  pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1180  if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1181  remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1182  pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1183  }
1184  } // while
1185 
1186  this->SamplePos += (SampleCount - remainingsamples);
1187  if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1188  return (SampleCount - remainingsamples);
1189  }
1190  }
1191 
1214  unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1215  if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1216 
1217  // if this is the first write in this sample, reset the
1218  // checksum calculator
1219  if (pCkData->GetPos() == 0) {
1220  __resetCRC(crc);
1221  }
1222  if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1223  unsigned long res;
1224  if (BitDepth == 24) {
1225  res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1226  } else { // 16 bit
1227  res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1228  : pCkData->Write(pBuffer, SampleCount, 2);
1229  }
1230  __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1231 
1232  // if this is the last write, update the checksum chunk in the
1233  // file
1234  if (pCkData->GetPos() == pCkData->GetSize()) {
1235  File* pFile = static_cast<File*>(GetParent());
1236  pFile->SetSampleChecksum(this, __encodeCRC(crc));
1237  }
1238  return res;
1239  }
1240 
1257  buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1258  buffer_t result;
1259  const double worstCaseHeaderOverhead =
1260  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1261  result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1262  result.pStart = new int8_t[result.Size];
1263  result.NullExtensionSize = 0;
1264  return result;
1265  }
1266 
1274  void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1275  if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1276  delete[] (int8_t*) DecompressionBuffer.pStart;
1277  DecompressionBuffer.pStart = NULL;
1278  DecompressionBuffer.Size = 0;
1279  DecompressionBuffer.NullExtensionSize = 0;
1280  }
1281  }
1282 
1292  return pGroup;
1293  }
1294 
1296  Instances--;
1298  delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1301  }
1302  if (FrameTable) delete[] FrameTable;
1303  if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1304  }
1305 
1306 
1307 
1308 // *************** DimensionRegion ***************
1309 // *
1310 
1311  uint DimensionRegion::Instances = 0;
1312  DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1313 
1314  DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1315  Instances++;
1316 
1317  pSample = NULL;
1318  pRegion = pParent;
1319 
1320  if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1321  else memset(&Crossfade, 0, 4);
1322 
1323  if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1324 
1325  RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1326  if (_3ewa) { // if '3ewa' chunk exists
1327  _3ewa->ReadInt32(); // unknown, always == chunk size ?
1328  LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1329  EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1330  _3ewa->ReadInt16(); // unknown
1331  LFO1InternalDepth = _3ewa->ReadUint16();
1332  _3ewa->ReadInt16(); // unknown
1333  LFO3InternalDepth = _3ewa->ReadInt16();
1334  _3ewa->ReadInt16(); // unknown
1335  LFO1ControlDepth = _3ewa->ReadUint16();
1336  _3ewa->ReadInt16(); // unknown
1337  LFO3ControlDepth = _3ewa->ReadInt16();
1338  EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339  EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1340  _3ewa->ReadInt16(); // unknown
1341  EG1Sustain = _3ewa->ReadUint16();
1342  EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1343  EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1344  uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1345  EG1ControllerInvert = eg1ctrloptions & 0x01;
1349  EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1350  uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1351  EG2ControllerInvert = eg2ctrloptions & 0x01;
1355  LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1356  EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357  EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1358  _3ewa->ReadInt16(); // unknown
1359  EG2Sustain = _3ewa->ReadUint16();
1360  EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1361  _3ewa->ReadInt16(); // unknown
1362  LFO2ControlDepth = _3ewa->ReadUint16();
1363  LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1364  _3ewa->ReadInt16(); // unknown
1365  LFO2InternalDepth = _3ewa->ReadUint16();
1366  int32_t eg1decay2 = _3ewa->ReadInt32();
1367  EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1368  EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1369  _3ewa->ReadInt16(); // unknown
1370  EG1PreAttack = _3ewa->ReadUint16();
1371  int32_t eg2decay2 = _3ewa->ReadInt32();
1372  EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1373  EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1374  _3ewa->ReadInt16(); // unknown
1375  EG2PreAttack = _3ewa->ReadUint16();
1376  uint8_t velocityresponse = _3ewa->ReadUint8();
1377  if (velocityresponse < 5) {
1379  VelocityResponseDepth = velocityresponse;
1380  } else if (velocityresponse < 10) {
1382  VelocityResponseDepth = velocityresponse - 5;
1383  } else if (velocityresponse < 15) {
1385  VelocityResponseDepth = velocityresponse - 10;
1386  } else {
1389  }
1390  uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1391  if (releasevelocityresponse < 5) {
1393  ReleaseVelocityResponseDepth = releasevelocityresponse;
1394  } else if (releasevelocityresponse < 10) {
1396  ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1397  } else if (releasevelocityresponse < 15) {
1399  ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1400  } else {
1403  }
1406  _3ewa->ReadInt32(); // unknown
1407  SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1408  _3ewa->ReadInt16(); // unknown
1409  uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1410  PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1411  if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1412  else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1414  uint8_t pan = _3ewa->ReadUint8();
1415  Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1416  SelfMask = _3ewa->ReadInt8() & 0x01;
1417  _3ewa->ReadInt8(); // unknown
1418  uint8_t lfo3ctrl = _3ewa->ReadUint8();
1419  LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1420  LFO3Sync = lfo3ctrl & 0x20; // bit 5
1421  InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1422  AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1423  uint8_t lfo2ctrl = _3ewa->ReadUint8();
1424  LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1425  LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1426  LFO2Sync = lfo2ctrl & 0x20; // bit 5
1427  bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1428  uint8_t lfo1ctrl = _3ewa->ReadUint8();
1429  LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1430  LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1431  LFO1Sync = lfo1ctrl & 0x40; // bit 6
1432  VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1434  uint16_t eg3depth = _3ewa->ReadUint16();
1435  EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1436  : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1437  _3ewa->ReadInt16(); // unknown
1438  ChannelOffset = _3ewa->ReadUint8() / 4;
1439  uint8_t regoptions = _3ewa->ReadUint8();
1440  MSDecode = regoptions & 0x01; // bit 0
1441  SustainDefeat = regoptions & 0x02; // bit 1
1442  _3ewa->ReadInt16(); // unknown
1443  VelocityUpperLimit = _3ewa->ReadInt8();
1444  _3ewa->ReadInt8(); // unknown
1445  _3ewa->ReadInt16(); // unknown
1446  ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1447  _3ewa->ReadInt8(); // unknown
1448  _3ewa->ReadInt8(); // unknown
1449  EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1450  uint8_t vcfcutoff = _3ewa->ReadUint8();
1451  VCFEnabled = vcfcutoff & 0x80; // bit 7
1452  VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1453  VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1454  uint8_t vcfvelscale = _3ewa->ReadUint8();
1455  VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1456  VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1457  _3ewa->ReadInt8(); // unknown
1458  uint8_t vcfresonance = _3ewa->ReadUint8();
1459  VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1460  VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1461  uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1462  VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1463  VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1464  uint8_t vcfvelocity = _3ewa->ReadUint8();
1465  VCFVelocityDynamicRange = vcfvelocity % 5;
1466  VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1467  VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1468  if (VCFType == vcf_type_lowpass) {
1469  if (lfo3ctrl & 0x40) // bit 6
1471  }
1472  if (_3ewa->RemainingBytes() >= 8) {
1473  _3ewa->Read(DimensionUpperLimits, 1, 8);
1474  } else {
1475  memset(DimensionUpperLimits, 0, 8);
1476  }
1477  } else { // '3ewa' chunk does not exist yet
1478  // use default values
1479  LFO3Frequency = 1.0;
1480  EG3Attack = 0.0;
1481  LFO1InternalDepth = 0;
1482  LFO3InternalDepth = 0;
1483  LFO1ControlDepth = 0;
1484  LFO3ControlDepth = 0;
1485  EG1Attack = 0.0;
1486  EG1Decay1 = 0.005;
1487  EG1Sustain = 1000;
1488  EG1Release = 0.3;
1491  EG1ControllerInvert = false;
1497  EG2ControllerInvert = false;
1501  LFO1Frequency = 1.0;
1502  EG2Attack = 0.0;
1503  EG2Decay1 = 0.005;
1504  EG2Sustain = 1000;
1505  EG2Release = 0.3;
1506  LFO2ControlDepth = 0;
1507  LFO2Frequency = 1.0;
1508  LFO2InternalDepth = 0;
1509  EG1Decay2 = 0.0;
1510  EG1InfiniteSustain = true;
1511  EG1PreAttack = 0;
1512  EG2Decay2 = 0.0;
1513  EG2InfiniteSustain = true;
1514  EG2PreAttack = 0;
1521  SampleStartOffset = 0;
1522  PitchTrack = true;
1524  Pan = 0;
1525  SelfMask = true;
1527  LFO3Sync = false;
1532  LFO2FlipPhase = false;
1533  LFO2Sync = false;
1535  LFO1FlipPhase = false;
1536  LFO1Sync = false;
1538  EG3Depth = 0;
1539  ChannelOffset = 0;
1540  MSDecode = false;
1541  SustainDefeat = false;
1542  VelocityUpperLimit = 0;
1543  ReleaseTriggerDecay = 0;
1544  EG1Hold = false;
1545  VCFEnabled = false;
1546  VCFCutoff = 0;
1548  VCFCutoffControllerInvert = false;
1549  VCFVelocityScale = 0;
1550  VCFResonance = 0;
1551  VCFResonanceDynamic = false;
1552  VCFKeyboardTracking = false;
1554  VCFVelocityDynamicRange = 0x04;
1557  memset(DimensionUpperLimits, 127, 8);
1558  }
1559 
1560  pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1563 
1564  pVelocityReleaseTable = GetReleaseVelocityTable(
1567  );
1568 
1569  pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1573 
1574  SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1575  VelocityTable = 0;
1576  }
1577 
1578  /*
1579  * Constructs a DimensionRegion by copying all parameters from
1580  * another DimensionRegion
1581  */
1582  DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1583  Instances++;
1584  //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1585  *this = src; // default memberwise shallow copy of all parameters
1586  pParentList = _3ewl; // restore the chunk pointer
1587 
1588  // deep copy of owned structures
1589  if (src.VelocityTable) {
1590  VelocityTable = new uint8_t[128];
1591  for (int k = 0 ; k < 128 ; k++)
1592  VelocityTable[k] = src.VelocityTable[k];
1593  }
1594  if (src.pSampleLoops) {
1596  for (int k = 0 ; k < src.SampleLoops ; k++)
1597  pSampleLoops[k] = src.pSampleLoops[k];
1598  }
1599  }
1600 
1611  // delete all allocated data first
1612  if (VelocityTable) delete [] VelocityTable;
1613  if (pSampleLoops) delete [] pSampleLoops;
1614 
1615  // backup parent list pointer
1616  RIFF::List* p = pParentList;
1617 
1618  //NOTE: copy code copied from assignment constructor above, see comment there as well
1619 
1620  *this = *orig; // default memberwise shallow copy of all parameters
1621  pParentList = p; // restore the chunk pointer
1622 
1623  // deep copy of owned structures
1624  if (orig->VelocityTable) {
1625  VelocityTable = new uint8_t[128];
1626  for (int k = 0 ; k < 128 ; k++)
1627  VelocityTable[k] = orig->VelocityTable[k];
1628  }
1629  if (orig->pSampleLoops) {
1631  for (int k = 0 ; k < orig->SampleLoops ; k++)
1632  pSampleLoops[k] = orig->pSampleLoops[k];
1633  }
1634  }
1635 
1640  void DimensionRegion::SetGain(int32_t gain) {
1641  DLS::Sampler::SetGain(gain);
1642  SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1643  }
1644 
1653  // first update base class's chunk
1655 
1657  uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1658  pData[12] = Crossfade.in_start;
1659  pData[13] = Crossfade.in_end;
1660  pData[14] = Crossfade.out_start;
1661  pData[15] = Crossfade.out_end;
1662 
1663  // make sure '3ewa' chunk exists
1665  if (!_3ewa) {
1666  File* pFile = (File*) GetParent()->GetParent()->GetParent();
1667  bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1668  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1669  }
1670  pData = (uint8_t*) _3ewa->LoadChunkData();
1671 
1672  // update '3ewa' chunk with DimensionRegion's current settings
1673 
1674  const uint32_t chunksize = _3ewa->GetNewSize();
1675  store32(&pData[0], chunksize); // unknown, always chunk size?
1676 
1677  const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1678  store32(&pData[4], lfo3freq);
1679 
1680  const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1681  store32(&pData[8], eg3attack);
1682 
1683  // next 2 bytes unknown
1684 
1685  store16(&pData[14], LFO1InternalDepth);
1686 
1687  // next 2 bytes unknown
1688 
1689  store16(&pData[18], LFO3InternalDepth);
1690 
1691  // next 2 bytes unknown
1692 
1693  store16(&pData[22], LFO1ControlDepth);
1694 
1695  // next 2 bytes unknown
1696 
1697  store16(&pData[26], LFO3ControlDepth);
1698 
1699  const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1700  store32(&pData[28], eg1attack);
1701 
1702  const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1703  store32(&pData[32], eg1decay1);
1704 
1705  // next 2 bytes unknown
1706 
1707  store16(&pData[38], EG1Sustain);
1708 
1709  const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1710  store32(&pData[40], eg1release);
1711 
1712  const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1713  pData[44] = eg1ctl;
1714 
1715  const uint8_t eg1ctrloptions =
1716  (EG1ControllerInvert ? 0x01 : 0x00) |
1720  pData[45] = eg1ctrloptions;
1721 
1722  const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1723  pData[46] = eg2ctl;
1724 
1725  const uint8_t eg2ctrloptions =
1726  (EG2ControllerInvert ? 0x01 : 0x00) |
1730  pData[47] = eg2ctrloptions;
1731 
1732  const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1733  store32(&pData[48], lfo1freq);
1734 
1735  const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1736  store32(&pData[52], eg2attack);
1737 
1738  const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1739  store32(&pData[56], eg2decay1);
1740 
1741  // next 2 bytes unknown
1742 
1743  store16(&pData[62], EG2Sustain);
1744 
1745  const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1746  store32(&pData[64], eg2release);
1747 
1748  // next 2 bytes unknown
1749 
1750  store16(&pData[70], LFO2ControlDepth);
1751 
1752  const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1753  store32(&pData[72], lfo2freq);
1754 
1755  // next 2 bytes unknown
1756 
1757  store16(&pData[78], LFO2InternalDepth);
1758 
1759  const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1760  store32(&pData[80], eg1decay2);
1761 
1762  // next 2 bytes unknown
1763 
1764  store16(&pData[86], EG1PreAttack);
1765 
1766  const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1767  store32(&pData[88], eg2decay2);
1768 
1769  // next 2 bytes unknown
1770 
1771  store16(&pData[94], EG2PreAttack);
1772 
1773  {
1774  if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1775  uint8_t velocityresponse = VelocityResponseDepth;
1776  switch (VelocityResponseCurve) {
1777  case curve_type_nonlinear:
1778  break;
1779  case curve_type_linear:
1780  velocityresponse += 5;
1781  break;
1782  case curve_type_special:
1783  velocityresponse += 10;
1784  break;
1785  case curve_type_unknown:
1786  default:
1787  throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1788  }
1789  pData[96] = velocityresponse;
1790  }
1791 
1792  {
1793  if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1794  uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1795  switch (ReleaseVelocityResponseCurve) {
1796  case curve_type_nonlinear:
1797  break;
1798  case curve_type_linear:
1799  releasevelocityresponse += 5;
1800  break;
1801  case curve_type_special:
1802  releasevelocityresponse += 10;
1803  break;
1804  case curve_type_unknown:
1805  default:
1806  throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1807  }
1808  pData[97] = releasevelocityresponse;
1809  }
1810 
1811  pData[98] = VelocityResponseCurveScaling;
1812 
1813  pData[99] = AttenuationControllerThreshold;
1814 
1815  // next 4 bytes unknown
1816 
1817  store16(&pData[104], SampleStartOffset);
1818 
1819  // next 2 bytes unknown
1820 
1821  {
1822  uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1823  switch (DimensionBypass) {
1824  case dim_bypass_ctrl_94:
1825  pitchTrackDimensionBypass |= 0x10;
1826  break;
1827  case dim_bypass_ctrl_95:
1828  pitchTrackDimensionBypass |= 0x20;
1829  break;
1830  case dim_bypass_ctrl_none:
1831  //FIXME: should we set anything here?
1832  break;
1833  default:
1834  throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1835  }
1836  pData[108] = pitchTrackDimensionBypass;
1837  }
1838 
1839  const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1840  pData[109] = pan;
1841 
1842  const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1843  pData[110] = selfmask;
1844 
1845  // next byte unknown
1846 
1847  {
1848  uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1849  if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1850  if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1851  if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1852  pData[112] = lfo3ctrl;
1853  }
1854 
1855  const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1856  pData[113] = attenctl;
1857 
1858  {
1859  uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1860  if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1861  if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1862  if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1863  pData[114] = lfo2ctrl;
1864  }
1865 
1866  {
1867  uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1868  if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1869  if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1872  pData[115] = lfo1ctrl;
1873  }
1874 
1875  const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1876  : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1877  store16(&pData[116], eg3depth);
1878 
1879  // next 2 bytes unknown
1880 
1881  const uint8_t channeloffset = ChannelOffset * 4;
1882  pData[120] = channeloffset;
1883 
1884  {
1885  uint8_t regoptions = 0;
1886  if (MSDecode) regoptions |= 0x01; // bit 0
1887  if (SustainDefeat) regoptions |= 0x02; // bit 1
1888  pData[121] = regoptions;
1889  }
1890 
1891  // next 2 bytes unknown
1892 
1893  pData[124] = VelocityUpperLimit;
1894 
1895  // next 3 bytes unknown
1896 
1897  pData[128] = ReleaseTriggerDecay;
1898 
1899  // next 2 bytes unknown
1900 
1901  const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1902  pData[131] = eg1hold;
1903 
1904  const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1905  (VCFCutoff & 0x7f); /* lower 7 bits */
1906  pData[132] = vcfcutoff;
1907 
1908  pData[133] = VCFCutoffController;
1909 
1910  const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1911  (VCFVelocityScale & 0x7f); /* lower 7 bits */
1912  pData[134] = vcfvelscale;
1913 
1914  // next byte unknown
1915 
1916  const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1917  (VCFResonance & 0x7f); /* lower 7 bits */
1918  pData[136] = vcfresonance;
1919 
1920  const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1921  (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1922  pData[137] = vcfbreakpoint;
1923 
1924  const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
1925  VCFVelocityCurve * 5;
1926  pData[138] = vcfvelocity;
1927 
1928  const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1929  pData[139] = vcftype;
1930 
1931  if (chunksize >= 148) {
1932  memcpy(&pData[140], DimensionUpperLimits, 8);
1933  }
1934  }
1935 
1936  double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1937  curve_type_t curveType = releaseVelocityResponseCurve;
1938  uint8_t depth = releaseVelocityResponseDepth;
1939  // this models a strange behaviour or bug in GSt: two of the
1940  // velocity response curves for release time are not used even
1941  // if specified, instead another curve is chosen.
1942  if ((curveType == curve_type_nonlinear && depth == 0) ||
1943  (curveType == curve_type_special && depth == 4)) {
1944  curveType = curve_type_nonlinear;
1945  depth = 3;
1946  }
1947  return GetVelocityTable(curveType, depth, 0);
1948  }
1949 
1950  double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1951  uint8_t vcfVelocityDynamicRange,
1952  uint8_t vcfVelocityScale,
1953  vcf_cutoff_ctrl_t vcfCutoffController)
1954  {
1955  curve_type_t curveType = vcfVelocityCurve;
1956  uint8_t depth = vcfVelocityDynamicRange;
1957  // even stranger GSt: two of the velocity response curves for
1958  // filter cutoff are not used, instead another special curve
1959  // is chosen. This curve is not used anywhere else.
1960  if ((curveType == curve_type_nonlinear && depth == 0) ||
1961  (curveType == curve_type_special && depth == 4)) {
1962  curveType = curve_type_special;
1963  depth = 5;
1964  }
1965  return GetVelocityTable(curveType, depth,
1966  (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1967  ? vcfVelocityScale : 0);
1968  }
1969 
1970  // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1971  double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1972  {
1973  double* table;
1974  uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1975  if (pVelocityTables->count(tableKey)) { // if key exists
1976  table = (*pVelocityTables)[tableKey];
1977  }
1978  else {
1979  table = CreateVelocityTable(curveType, depth, scaling);
1980  (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1981  }
1982  return table;
1983  }
1984 
1986  return pRegion;
1987  }
1988 
1989  leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1990  leverage_ctrl_t decodedcontroller;
1991  switch (EncodedController) {
1992  // special controller
1993  case _lev_ctrl_none:
1994  decodedcontroller.type = leverage_ctrl_t::type_none;
1995  decodedcontroller.controller_number = 0;
1996  break;
1997  case _lev_ctrl_velocity:
1998  decodedcontroller.type = leverage_ctrl_t::type_velocity;
1999  decodedcontroller.controller_number = 0;
2000  break;
2001  case _lev_ctrl_channelaftertouch:
2002  decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2003  decodedcontroller.controller_number = 0;
2004  break;
2005 
2006  // ordinary MIDI control change controller
2007  case _lev_ctrl_modwheel:
2008  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2009  decodedcontroller.controller_number = 1;
2010  break;
2011  case _lev_ctrl_breath:
2012  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2013  decodedcontroller.controller_number = 2;
2014  break;
2015  case _lev_ctrl_foot:
2016  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2017  decodedcontroller.controller_number = 4;
2018  break;
2019  case _lev_ctrl_effect1:
2020  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2021  decodedcontroller.controller_number = 12;
2022  break;
2023  case _lev_ctrl_effect2:
2024  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2025  decodedcontroller.controller_number = 13;
2026  break;
2027  case _lev_ctrl_genpurpose1:
2028  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2029  decodedcontroller.controller_number = 16;
2030  break;
2031  case _lev_ctrl_genpurpose2:
2032  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2033  decodedcontroller.controller_number = 17;
2034  break;
2035  case _lev_ctrl_genpurpose3:
2036  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2037  decodedcontroller.controller_number = 18;
2038  break;
2039  case _lev_ctrl_genpurpose4:
2040  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2041  decodedcontroller.controller_number = 19;
2042  break;
2043  case _lev_ctrl_portamentotime:
2044  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2045  decodedcontroller.controller_number = 5;
2046  break;
2047  case _lev_ctrl_sustainpedal:
2048  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2049  decodedcontroller.controller_number = 64;
2050  break;
2051  case _lev_ctrl_portamento:
2052  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2053  decodedcontroller.controller_number = 65;
2054  break;
2055  case _lev_ctrl_sostenutopedal:
2056  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2057  decodedcontroller.controller_number = 66;
2058  break;
2059  case _lev_ctrl_softpedal:
2060  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2061  decodedcontroller.controller_number = 67;
2062  break;
2063  case _lev_ctrl_genpurpose5:
2064  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2065  decodedcontroller.controller_number = 80;
2066  break;
2067  case _lev_ctrl_genpurpose6:
2068  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2069  decodedcontroller.controller_number = 81;
2070  break;
2071  case _lev_ctrl_genpurpose7:
2072  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2073  decodedcontroller.controller_number = 82;
2074  break;
2075  case _lev_ctrl_genpurpose8:
2076  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2077  decodedcontroller.controller_number = 83;
2078  break;
2079  case _lev_ctrl_effect1depth:
2080  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2081  decodedcontroller.controller_number = 91;
2082  break;
2083  case _lev_ctrl_effect2depth:
2084  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2085  decodedcontroller.controller_number = 92;
2086  break;
2087  case _lev_ctrl_effect3depth:
2088  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2089  decodedcontroller.controller_number = 93;
2090  break;
2091  case _lev_ctrl_effect4depth:
2092  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2093  decodedcontroller.controller_number = 94;
2094  break;
2095  case _lev_ctrl_effect5depth:
2096  decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2097  decodedcontroller.controller_number = 95;
2098  break;
2099 
2100  // unknown controller type
2101  default:
2102  throw gig::Exception("Unknown leverage controller type.");
2103  }
2104  return decodedcontroller;
2105  }
2106 
2107  DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2108  _lev_ctrl_t encodedcontroller;
2109  switch (DecodedController.type) {
2110  // special controller
2112  encodedcontroller = _lev_ctrl_none;
2113  break;
2115  encodedcontroller = _lev_ctrl_velocity;
2116  break;
2118  encodedcontroller = _lev_ctrl_channelaftertouch;
2119  break;
2120 
2121  // ordinary MIDI control change controller
2123  switch (DecodedController.controller_number) {
2124  case 1:
2125  encodedcontroller = _lev_ctrl_modwheel;
2126  break;
2127  case 2:
2128  encodedcontroller = _lev_ctrl_breath;
2129  break;
2130  case 4:
2131  encodedcontroller = _lev_ctrl_foot;
2132  break;
2133  case 12:
2134  encodedcontroller = _lev_ctrl_effect1;
2135  break;
2136  case 13:
2137  encodedcontroller = _lev_ctrl_effect2;
2138  break;
2139  case 16:
2140  encodedcontroller = _lev_ctrl_genpurpose1;
2141  break;
2142  case 17:
2143  encodedcontroller = _lev_ctrl_genpurpose2;
2144  break;
2145  case 18:
2146  encodedcontroller = _lev_ctrl_genpurpose3;
2147  break;
2148  case 19:
2149  encodedcontroller = _lev_ctrl_genpurpose4;
2150  break;
2151  case 5:
2152  encodedcontroller = _lev_ctrl_portamentotime;
2153  break;
2154  case 64:
2155  encodedcontroller = _lev_ctrl_sustainpedal;
2156  break;
2157  case 65:
2158  encodedcontroller = _lev_ctrl_portamento;
2159  break;
2160  case 66:
2161  encodedcontroller = _lev_ctrl_sostenutopedal;
2162  break;
2163  case 67:
2164  encodedcontroller = _lev_ctrl_softpedal;
2165  break;
2166  case 80:
2167  encodedcontroller = _lev_ctrl_genpurpose5;
2168  break;
2169  case 81:
2170  encodedcontroller = _lev_ctrl_genpurpose6;
2171  break;
2172  case 82:
2173  encodedcontroller = _lev_ctrl_genpurpose7;
2174  break;
2175  case 83:
2176  encodedcontroller = _lev_ctrl_genpurpose8;
2177  break;
2178  case 91:
2179  encodedcontroller = _lev_ctrl_effect1depth;
2180  break;
2181  case 92:
2182  encodedcontroller = _lev_ctrl_effect2depth;
2183  break;
2184  case 93:
2185  encodedcontroller = _lev_ctrl_effect3depth;
2186  break;
2187  case 94:
2188  encodedcontroller = _lev_ctrl_effect4depth;
2189  break;
2190  case 95:
2191  encodedcontroller = _lev_ctrl_effect5depth;
2192  break;
2193  default:
2194  throw gig::Exception("leverage controller number is not supported by the gig format");
2195  }
2196  break;
2197  default:
2198  throw gig::Exception("Unknown leverage controller type.");
2199  }
2200  return encodedcontroller;
2201  }
2202 
2204  Instances--;
2205  if (!Instances) {
2206  // delete the velocity->volume tables
2207  VelocityTableMap::iterator iter;
2208  for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2209  double* pTable = iter->second;
2210  if (pTable) delete[] pTable;
2211  }
2212  pVelocityTables->clear();
2213  delete pVelocityTables;
2214  pVelocityTables = NULL;
2215  }
2216  if (VelocityTable) delete[] VelocityTable;
2217  }
2218 
2230  double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2231  return pVelocityAttenuationTable[MIDIKeyVelocity];
2232  }
2233 
2234  double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2235  return pVelocityReleaseTable[MIDIKeyVelocity];
2236  }
2237 
2238  double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2239  return pVelocityCutoffTable[MIDIKeyVelocity];
2240  }
2241 
2247  pVelocityAttenuationTable =
2248  GetVelocityTable(
2250  );
2251  VelocityResponseCurve = curve;
2252  }
2253 
2259  pVelocityAttenuationTable =
2260  GetVelocityTable(
2262  );
2263  VelocityResponseDepth = depth;
2264  }
2265 
2271  pVelocityAttenuationTable =
2272  GetVelocityTable(
2274  );
2275  VelocityResponseCurveScaling = scaling;
2276  }
2277 
2283  pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2285  }
2286 
2292  pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2294  }
2295 
2301  pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2302  VCFCutoffController = controller;
2303  }
2304 
2310  pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2311  VCFVelocityCurve = curve;
2312  }
2313 
2319  pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2320  VCFVelocityDynamicRange = range;
2321  }
2322 
2328  pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2329  VCFVelocityScale = scaling;
2330  }
2331 
2332  double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2333 
2334  // line-segment approximations of the 15 velocity curves
2335 
2336  // linear
2337  const int lin0[] = { 1, 1, 127, 127 };
2338  const int lin1[] = { 1, 21, 127, 127 };
2339  const int lin2[] = { 1, 45, 127, 127 };
2340  const int lin3[] = { 1, 74, 127, 127 };
2341  const int lin4[] = { 1, 127, 127, 127 };
2342 
2343  // non-linear
2344  const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2345  const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2346  127, 127 };
2347  const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2348  127, 127 };
2349  const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2350  127, 127 };
2351  const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2352 
2353  // special
2354  const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2355  113, 127, 127, 127 };
2356  const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2357  118, 127, 127, 127 };
2358  const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2359  85, 90, 91, 127, 127, 127 };
2360  const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2361  117, 127, 127, 127 };
2362  const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2363  127, 127 };
2364 
2365  // this is only used by the VCF velocity curve
2366  const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2367  91, 127, 127, 127 };
2368 
2369  const int* const curves[] = { non0, non1, non2, non3, non4,
2370  lin0, lin1, lin2, lin3, lin4,
2371  spe0, spe1, spe2, spe3, spe4, spe5 };
2372 
2373  double* const table = new double[128];
2374 
2375  const int* curve = curves[curveType * 5 + depth];
2376  const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2377 
2378  table[0] = 0;
2379  for (int x = 1 ; x < 128 ; x++) {
2380 
2381  if (x > curve[2]) curve += 2;
2382  double y = curve[1] + (x - curve[0]) *
2383  (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2384  y = y / 127;
2385 
2386  // Scale up for s > 20, down for s < 20. When
2387  // down-scaling, the curve still ends at 1.0.
2388  if (s < 20 && y >= 0.5)
2389  y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2390  else
2391  y = y * (s / 20.0);
2392  if (y > 1) y = 1;
2393 
2394  table[x] = y;
2395  }
2396  return table;
2397  }
2398 
2399 
2400 // *************** Region ***************
2401 // *
2402 
2403  Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2404  // Initialization
2405  Dimensions = 0;
2406  for (int i = 0; i < 256; i++) {
2407  pDimensionRegions[i] = NULL;
2408  }
2409  Layers = 1;
2410  File* file = (File*) GetParent()->GetParent();
2411  int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2412 
2413  // Actual Loading
2414 
2415  if (!file->GetAutoLoad()) return;
2416 
2417  LoadDimensionRegions(rgnList);
2418 
2419  RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2420  if (_3lnk) {
2421  DimensionRegions = _3lnk->ReadUint32();
2422  for (int i = 0; i < dimensionBits; i++) {
2423  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2424  uint8_t bits = _3lnk->ReadUint8();
2425  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2426  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2427  uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2428  if (dimension == dimension_none) { // inactive dimension
2430  pDimensionDefinitions[i].bits = 0;
2434  }
2435  else { // active dimension
2436  pDimensionDefinitions[i].dimension = dimension;
2437  pDimensionDefinitions[i].bits = bits;
2438  pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2439  pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2440  pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2441  Dimensions++;
2442 
2443  // if this is a layer dimension, remember the amount of layers
2444  if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2445  }
2446  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2447  }
2448  for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2449 
2450  // if there's a velocity dimension and custom velocity zone splits are used,
2451  // update the VelocityTables in the dimension regions
2453 
2454  // jump to start of the wave pool indices (if not already there)
2455  if (file->pVersion && file->pVersion->major == 3)
2456  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2457  else
2458  _3lnk->SetPos(44);
2459 
2460  // load sample references (if auto loading is enabled)
2461  if (file->GetAutoLoad()) {
2462  for (uint i = 0; i < DimensionRegions; i++) {
2463  uint32_t wavepoolindex = _3lnk->ReadUint32();
2464  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2465  }
2466  GetSample(); // load global region sample reference
2467  }
2468  } else {
2469  DimensionRegions = 0;
2470  for (int i = 0 ; i < 8 ; i++) {
2472  pDimensionDefinitions[i].bits = 0;
2474  }
2475  }
2476 
2477  // make sure there is at least one dimension region
2478  if (!DimensionRegions) {
2479  RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2480  if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2481  RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2482  pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2483  DimensionRegions = 1;
2484  }
2485  }
2486 
2497  // in the gig format we don't care about the Region's sample reference
2498  // but we still have to provide some existing one to not corrupt the
2499  // file, so to avoid the latter we simply always assign the sample of
2500  // the first dimension region of this region
2502 
2503  // first update base class's chunks
2505 
2506  // update dimension region's chunks
2507  for (int i = 0; i < DimensionRegions; i++) {
2509  }
2510 
2511  File* pFile = (File*) GetParent()->GetParent();
2512  bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2513  const int iMaxDimensions = version3 ? 8 : 5;
2514  const int iMaxDimensionRegions = version3 ? 256 : 32;
2515 
2516  // make sure '3lnk' chunk exists
2518  if (!_3lnk) {
2519  const int _3lnkChunkSize = version3 ? 1092 : 172;
2520  _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2521  memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2522 
2523  // move 3prg to last position
2525  }
2526 
2527  // update dimension definitions in '3lnk' chunk
2528  uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2529  store32(&pData[0], DimensionRegions);
2530  int shift = 0;
2531  for (int i = 0; i < iMaxDimensions; i++) {
2532  pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2533  pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2534  pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2535  pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2536  pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2537  // next 3 bytes unknown, always zero?
2538 
2539  shift += pDimensionDefinitions[i].bits;
2540  }
2541 
2542  // update wave pool table in '3lnk' chunk
2543  const int iWavePoolOffset = version3 ? 68 : 44;
2544  for (uint i = 0; i < iMaxDimensionRegions; i++) {
2545  int iWaveIndex = -1;
2546  if (i < DimensionRegions) {
2547  if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2548  File::SampleList::iterator iter = pFile->pSamples->begin();
2549  File::SampleList::iterator end = pFile->pSamples->end();
2550  for (int index = 0; iter != end; ++iter, ++index) {
2551  if (*iter == pDimensionRegions[i]->pSample) {
2552  iWaveIndex = index;
2553  break;
2554  }
2555  }
2556  }
2557  store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2558  }
2559  }
2560 
2562  RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2563  if (_3prg) {
2564  int dimensionRegionNr = 0;
2565  RIFF::List* _3ewl = _3prg->GetFirstSubList();
2566  while (_3ewl) {
2567  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2568  pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2569  dimensionRegionNr++;
2570  }
2571  _3ewl = _3prg->GetNextSubList();
2572  }
2573  if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2574  }
2575  }
2576 
2577  void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2578  // update KeyRange struct and make sure regions are in correct order
2579  DLS::Region::SetKeyRange(Low, High);
2580  // update Region key table for fast lookup
2581  ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2582  }
2583 
2585  // get velocity dimension's index
2586  int veldim = -1;
2587  for (int i = 0 ; i < Dimensions ; i++) {
2588  if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2589  veldim = i;
2590  break;
2591  }
2592  }
2593  if (veldim == -1) return;
2594 
2595  int step = 1;
2596  for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2597  int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2598  int end = step * pDimensionDefinitions[veldim].zones;
2599 
2600  // loop through all dimension regions for all dimensions except the velocity dimension
2601  int dim[8] = { 0 };
2602  for (int i = 0 ; i < DimensionRegions ; i++) {
2603 
2604  if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2605  pDimensionRegions[i]->VelocityUpperLimit) {
2606  // create the velocity table
2607  uint8_t* table = pDimensionRegions[i]->VelocityTable;
2608  if (!table) {
2609  table = new uint8_t[128];
2610  pDimensionRegions[i]->VelocityTable = table;
2611  }
2612  int tableidx = 0;
2613  int velocityZone = 0;
2614  if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2615  for (int k = i ; k < end ; k += step) {
2617  for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2618  velocityZone++;
2619  }
2620  } else { // gig2
2621  for (int k = i ; k < end ; k += step) {
2623  for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2624  velocityZone++;
2625  }
2626  }
2627  } else {
2628  if (pDimensionRegions[i]->VelocityTable) {
2629  delete[] pDimensionRegions[i]->VelocityTable;
2631  }
2632  }
2633 
2634  int j;
2635  int shift = 0;
2636  for (j = 0 ; j < Dimensions ; j++) {
2637  if (j == veldim) i += skipveldim; // skip velocity dimension
2638  else {
2639  dim[j]++;
2640  if (dim[j] < pDimensionDefinitions[j].zones) break;
2641  else {
2642  // skip unused dimension regions
2643  dim[j] = 0;
2644  i += ((1 << pDimensionDefinitions[j].bits) -
2645  pDimensionDefinitions[j].zones) << shift;
2646  }
2647  }
2648  shift += pDimensionDefinitions[j].bits;
2649  }
2650  if (j == Dimensions) break;
2651  }
2652  }
2653 
2670  // check if max. amount of dimensions reached
2671  File* file = (File*) GetParent()->GetParent();
2672  const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2673  if (Dimensions >= iMaxDimensions)
2674  throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2675  // check if max. amount of dimension bits reached
2676  int iCurrentBits = 0;
2677  for (int i = 0; i < Dimensions; i++)
2678  iCurrentBits += pDimensionDefinitions[i].bits;
2679  if (iCurrentBits >= iMaxDimensions)
2680  throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2681  const int iNewBits = iCurrentBits + pDimDef->bits;
2682  if (iNewBits > iMaxDimensions)
2683  throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2684  // check if there's already a dimensions of the same type
2685  for (int i = 0; i < Dimensions; i++)
2686  if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2687  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2688 
2689  // pos is where the new dimension should be placed, normally
2690  // last in list, except for the samplechannel dimension which
2691  // has to be first in list
2692  int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2693  int bitpos = 0;
2694  for (int i = 0 ; i < pos ; i++)
2695  bitpos += pDimensionDefinitions[i].bits;
2696 
2697  // make room for the new dimension
2698  for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2699  for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2700  for (int j = Dimensions ; j > pos ; j--) {
2703  }
2704  }
2705 
2706  // assign definition of new dimension
2707  pDimensionDefinitions[pos] = *pDimDef;
2708 
2709  // auto correct certain dimension definition fields (where possible)
2711  __resolveSplitType(pDimensionDefinitions[pos].dimension);
2713  __resolveZoneSize(pDimensionDefinitions[pos]);
2714 
2715  // create new dimension region(s) for this new dimension, and make
2716  // sure that the dimension regions are placed correctly in both the
2717  // RIFF list and the pDimensionRegions array
2718  RIFF::Chunk* moveTo = NULL;
2720  for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2721  for (int k = 0 ; k < (1 << bitpos) ; k++) {
2722  pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2723  }
2724  for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2725  for (int k = 0 ; k < (1 << bitpos) ; k++) {
2726  RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2727  if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2728  // create a new dimension region and copy all parameter values from
2729  // an existing dimension region
2730  pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2731  new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2732 
2733  DimensionRegions++;
2734  }
2735  }
2736  moveTo = pDimensionRegions[i]->pParentList;
2737  }
2738 
2739  // initialize the upper limits for this dimension
2740  int mask = (1 << bitpos) - 1;
2741  for (int z = 0 ; z < pDimDef->zones ; z++) {
2742  uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2743  for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2744  pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2745  (z << bitpos) |
2746  (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2747  }
2748  }
2749 
2750  Dimensions++;
2751 
2752  // if this is a layer dimension, update 'Layers' attribute
2753  if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2754 
2756  }
2757 
2770  // get dimension's index
2771  int iDimensionNr = -1;
2772  for (int i = 0; i < Dimensions; i++) {
2773  if (&pDimensionDefinitions[i] == pDimDef) {
2774  iDimensionNr = i;
2775  break;
2776  }
2777  }
2778  if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2779 
2780  // get amount of bits below the dimension to delete
2781  int iLowerBits = 0;
2782  for (int i = 0; i < iDimensionNr; i++)
2783  iLowerBits += pDimensionDefinitions[i].bits;
2784 
2785  // get amount ot bits above the dimension to delete
2786  int iUpperBits = 0;
2787  for (int i = iDimensionNr + 1; i < Dimensions; i++)
2788  iUpperBits += pDimensionDefinitions[i].bits;
2789 
2791 
2792  // delete dimension regions which belong to the given dimension
2793  // (that is where the dimension's bit > 0)
2794  for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2795  for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2796  for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2797  int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2798  iObsoleteBit << iLowerBits |
2799  iLowerBit;
2800 
2801  _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2802  delete pDimensionRegions[iToDelete];
2803  pDimensionRegions[iToDelete] = NULL;
2804  DimensionRegions--;
2805  }
2806  }
2807  }
2808 
2809  // defrag pDimensionRegions array
2810  // (that is remove the NULL spaces within the pDimensionRegions array)
2811  for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2812  if (!pDimensionRegions[iTo]) {
2813  if (iFrom <= iTo) iFrom = iTo + 1;
2814  while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2815  if (iFrom < 256 && pDimensionRegions[iFrom]) {
2816  pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2817  pDimensionRegions[iFrom] = NULL;
2818  }
2819  }
2820  }
2821 
2822  // remove the this dimension from the upper limits arrays
2823  for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2824  DimensionRegion* d = pDimensionRegions[j];
2825  for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2826  d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2827  }
2828  d->DimensionUpperLimits[Dimensions - 1] = 127;
2829  }
2830 
2831  // 'remove' dimension definition
2832  for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2834  }
2836  pDimensionDefinitions[Dimensions - 1].bits = 0;
2837  pDimensionDefinitions[Dimensions - 1].zones = 0;
2838 
2839  Dimensions--;
2840 
2841  // if this was a layer dimension, update 'Layers' attribute
2842  if (pDimDef->dimension == dimension_layer) Layers = 1;
2843  }
2844 
2846  for (int i = 0; i < 256; i++) {
2847  if (pDimensionRegions[i]) delete pDimensionRegions[i];
2848  }
2849  }
2850 
2870  uint8_t bits;
2871  int veldim = -1;
2872  int velbitpos;
2873  int bitpos = 0;
2874  int dimregidx = 0;
2875  for (uint i = 0; i < Dimensions; i++) {
2876  if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2877  // the velocity dimension must be handled after the other dimensions
2878  veldim = i;
2879  velbitpos = bitpos;
2880  } else {
2881  switch (pDimensionDefinitions[i].split_type) {
2882  case split_type_normal:
2883  if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2884  // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2885  for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2886  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2887  }
2888  } else {
2889  // gig2: evenly sized zones
2890  bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2891  }
2892  break;
2893  case split_type_bit: // the value is already the sought dimension bit number
2894  const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2895  bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2896  break;
2897  }
2898  dimregidx |= bits << bitpos;
2899  }
2900  bitpos += pDimensionDefinitions[i].bits;
2901  }
2902  DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2903  if (veldim != -1) {
2904  // (dimreg is now the dimension region for the lowest velocity)
2905  if (dimreg->VelocityTable) // custom defined zone ranges
2906  bits = dimreg->VelocityTable[DimValues[veldim]];
2907  else // normal split type
2908  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2909 
2910  dimregidx |= bits << velbitpos;
2911  dimreg = pDimensionRegions[dimregidx];
2912  }
2913  return dimreg;
2914  }
2915 
2927  return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2928  << pDimensionDefinitions[5].bits | DimBits[5])
2929  << pDimensionDefinitions[4].bits | DimBits[4])
2930  << pDimensionDefinitions[3].bits | DimBits[3])
2931  << pDimensionDefinitions[2].bits | DimBits[2])
2932  << pDimensionDefinitions[1].bits | DimBits[1])
2933  << pDimensionDefinitions[0].bits | DimBits[0]];
2934  }
2935 
2946  if (pSample) return static_cast<gig::Sample*>(pSample);
2947  else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2948  }
2949 
2950  Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2951  if ((int32_t)WavePoolTableIndex == -1) return NULL;
2952  File* file = (File*) GetParent()->GetParent();
2953  if (!file->pWavePoolTable) return NULL;
2954  unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2955  unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2956  Sample* sample = file->GetFirstSample(pProgress);
2957  while (sample) {
2958  if (sample->ulWavePoolOffset == soughtoffset &&
2959  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2960  sample = file->GetNextSample();
2961  }
2962  return NULL;
2963  }
2964 
2974  void Region::CopyAssign(const Region* orig) {
2975  // handle base classes
2977 
2978  // handle own member variables
2979  for (int i = Dimensions - 1; i >= 0; --i) {
2981  }
2982  Layers = 0; // just to be sure
2983  for (int i = 0; i < orig->Dimensions; i++) {
2984  // we need to copy the dim definition here, to avoid the compiler
2985  // complaining about const-ness issue
2986  dimension_def_t def = orig->pDimensionDefinitions[i];
2987  AddDimension(&def);
2988  }
2989  for (int i = 0; i < 256; i++) {
2990  if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
2992  orig->pDimensionRegions[i]
2993  );
2994  }
2995  }
2996  Layers = orig->Layers;
2997  }
2998 
2999 
3000 // *************** MidiRule ***************
3001 // *
3002 
3004  _3ewg->SetPos(36);
3005  Triggers = _3ewg->ReadUint8();
3006  _3ewg->SetPos(40);
3007  ControllerNumber = _3ewg->ReadUint8();
3008  _3ewg->SetPos(46);
3009  for (int i = 0 ; i < Triggers ; i++) {
3010  pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3011  pTriggers[i].Descending = _3ewg->ReadUint8();
3012  pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3013  pTriggers[i].Key = _3ewg->ReadUint8();
3014  pTriggers[i].NoteOff = _3ewg->ReadUint8();
3015  pTriggers[i].Velocity = _3ewg->ReadUint8();
3016  pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3017  _3ewg->ReadUint8();
3018  }
3019 }
3020 
3021 
3022 // *************** Instrument ***************
3023 // *
3024 
3025  Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3026  static const DLS::Info::string_length_t fixedStringLengths[] = {
3027  { CHUNK_ID_INAM, 64 },
3028  { CHUNK_ID_ISFT, 12 },
3029  { 0, 0 }
3030  };
3031  pInfo->SetFixedStringLengths(fixedStringLengths);
3032 
3033  // Initialization
3034  for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3035  EffectSend = 0;
3036  Attenuation = 0;
3037  FineTune = 0;
3038  PitchbendRange = 0;
3039  PianoReleaseMode = false;
3040  DimensionKeyRange.low = 0;
3041  DimensionKeyRange.high = 0;
3042  pMidiRules = new MidiRule*[3];
3043  pMidiRules[0] = NULL;
3044 
3045  // Loading
3046  RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
3047  if (lart) {
3048  RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3049  if (_3ewg) {
3050  EffectSend = _3ewg->ReadUint16();
3051  Attenuation = _3ewg->ReadInt32();
3052  FineTune = _3ewg->ReadInt16();
3053  PitchbendRange = _3ewg->ReadInt16();
3054  uint8_t dimkeystart = _3ewg->ReadUint8();
3055  PianoReleaseMode = dimkeystart & 0x01;
3056  DimensionKeyRange.low = dimkeystart >> 1;
3057  DimensionKeyRange.high = _3ewg->ReadUint8();
3058 
3059  if (_3ewg->GetSize() > 32) {
3060  // read MIDI rules
3061  int i = 0;
3062  _3ewg->SetPos(32);
3063  uint8_t id1 = _3ewg->ReadUint8();
3064  uint8_t id2 = _3ewg->ReadUint8();
3065 
3066  if (id1 == 4 && id2 == 16) {
3067  pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3068  }
3069  //TODO: all the other types of rules
3070 
3071  pMidiRules[i] = NULL;
3072  }
3073  }
3074  }
3075 
3076  if (pFile->GetAutoLoad()) {
3077  if (!pRegions) pRegions = new RegionList;
3078  RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3079  if (lrgn) {
3080  RIFF::List* rgn = lrgn->GetFirstSubList();
3081  while (rgn) {
3082  if (rgn->GetListType() == LIST_TYPE_RGN) {
3083  __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3084  pRegions->push_back(new Region(this, rgn));
3085  }
3086  rgn = lrgn->GetNextSubList();
3087  }
3088  // Creating Region Key Table for fast lookup
3090  }
3091  }
3092 
3093  __notify_progress(pProgress, 1.0f); // notify done
3094  }
3095 
3097  for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3098  RegionList::iterator iter = pRegions->begin();
3099  RegionList::iterator end = pRegions->end();
3100  for (; iter != end; ++iter) {
3101  gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3102  for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3103  RegionKeyTable[iKey] = pRegion;
3104  }
3105  }
3106  }
3107 
3109  for (int i = 0 ; pMidiRules[i] ; i++) {
3110  delete pMidiRules[i];
3111  }
3112  delete[] pMidiRules;
3113  }
3114 
3125  // first update base classes' chunks
3127 
3128  // update Regions' chunks
3129  {
3130  RegionList::iterator iter = pRegions->begin();
3131  RegionList::iterator end = pRegions->end();
3132  for (; iter != end; ++iter)
3133  (*iter)->UpdateChunks();
3134  }
3135 
3136  // make sure 'lart' RIFF list chunk exists
3138  if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3139  // make sure '3ewg' RIFF chunk exists
3140  RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3141  if (!_3ewg) {
3142  File* pFile = (File*) GetParent();
3143 
3144  // 3ewg is bigger in gig3, as it includes the iMIDI rules
3145  int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3146  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3147  memset(_3ewg->LoadChunkData(), 0, size);
3148  }
3149  // update '3ewg' RIFF chunk
3150  uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3151  store16(&pData[0], EffectSend);
3152  store32(&pData[2], Attenuation);
3153  store16(&pData[6], FineTune);
3154  store16(&pData[8], PitchbendRange);
3155  const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3156  DimensionKeyRange.low << 1;
3157  pData[10] = dimkeystart;
3158  pData[11] = DimensionKeyRange.high;
3159  }
3160 
3168  Region* Instrument::GetRegion(unsigned int Key) {
3169  if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3170  return RegionKeyTable[Key];
3171 
3172  /*for (int i = 0; i < Regions; i++) {
3173  if (Key <= pRegions[i]->KeyRange.high &&
3174  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3175  }
3176  return NULL;*/
3177  }
3178 
3187  if (!pRegions) return NULL;
3188  RegionsIterator = pRegions->begin();
3189  return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3190  }
3191 
3201  if (!pRegions) return NULL;
3202  RegionsIterator++;
3203  return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3204  }
3205 
3207  // create new Region object (and its RIFF chunks)
3209  if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3210  RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3211  Region* pNewRegion = new Region(this, rgn);
3212  pRegions->push_back(pNewRegion);
3213  Regions = pRegions->size();
3214  // update Region key table for fast lookup
3216  // done
3217  return pNewRegion;
3218  }
3219 
3221  if (!pRegions) return;
3223  // update Region key table for fast lookup
3225  }
3226 
3238  return pMidiRules[i];
3239  }
3240 
3251  // handle base class
3252  // (without copying DLS region stuff)
3254 
3255  // handle own member variables
3256  Attenuation = orig->Attenuation;
3257  EffectSend = orig->EffectSend;
3258  FineTune = orig->FineTune;
3262 
3263  // free old midi rules
3264  for (int i = 0 ; pMidiRules[i] ; i++) {
3265  delete pMidiRules[i];
3266  }
3267  //TODO: MIDI rule copying
3268  pMidiRules[0] = NULL;
3269 
3270  // delete all old regions
3271  while (Regions) DeleteRegion(GetFirstRegion());
3272  // create new regions and copy them from original
3273  {
3274  RegionList::const_iterator it = orig->pRegions->begin();
3275  for (int i = 0; i < orig->Regions; ++i, ++it) {
3276  Region* dstRgn = AddRegion();
3277  //NOTE: Region does semi-deep copy !
3278  dstRgn->CopyAssign(
3279  static_cast<gig::Region*>(*it)
3280  );
3281  }
3282  }
3283 
3285  }
3286 
3287 
3288 // *************** Group ***************
3289 // *
3290 
3297  Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3298  pFile = file;
3299  pNameChunk = ck3gnm;
3300  ::LoadString(pNameChunk, Name);
3301  }
3302 
3304  // remove the chunk associated with this group (if any)
3305  if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3306  }
3307 
3317  // make sure <3gri> and <3gnl> list chunks exist
3318  RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3319  if (!_3gri) {
3320  _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3321  pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3322  }
3323  RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3324  if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3325 
3326  if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3327  // v3 has a fixed list of 128 strings, find a free one
3328  for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3329  if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3330  pNameChunk = ck;
3331  break;
3332  }
3333  }
3334  }
3335 
3336  // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3337  ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3338  }
3339 
3352  // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3353  for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3354  if (pSample->GetGroup() == this) return pSample;
3355  }
3356  return NULL;
3357  }
3358 
3370  // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3371  for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3372  if (pSample->GetGroup() == this) return pSample;
3373  }
3374  return NULL;
3375  }
3376 
3380  void Group::AddSample(Sample* pSample) {
3381  pSample->pGroup = this;
3382  }
3383 
3391  // get "that" other group first
3392  Group* pOtherGroup = NULL;
3393  for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3394  if (pOtherGroup != this) break;
3395  }
3396  if (!pOtherGroup) throw Exception(
3397  "Could not move samples to another group, since there is no "
3398  "other Group. This is a bug, report it!"
3399  );
3400  // now move all samples of this group to the other group
3401  for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3402  pOtherGroup->AddSample(pSample);
3403  }
3404  }
3405 
3406 
3407 
3408 // *************** File ***************
3409 // *
3410 
3413  0, 2, 19980628 & 0xffff, 19980628 >> 16
3414  };
3415 
3418  0, 3, 20030331 & 0xffff, 20030331 >> 16
3419  };
3420 
3421  static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3422  { CHUNK_ID_IARL, 256 },
3423  { CHUNK_ID_IART, 128 },
3424  { CHUNK_ID_ICMS, 128 },
3425  { CHUNK_ID_ICMT, 1024 },
3426  { CHUNK_ID_ICOP, 128 },
3427  { CHUNK_ID_ICRD, 128 },
3428  { CHUNK_ID_IENG, 128 },
3429  { CHUNK_ID_IGNR, 128 },
3430  { CHUNK_ID_IKEY, 128 },
3431  { CHUNK_ID_IMED, 128 },
3432  { CHUNK_ID_INAM, 128 },
3433  { CHUNK_ID_IPRD, 128 },
3434  { CHUNK_ID_ISBJ, 128 },
3435  { CHUNK_ID_ISFT, 128 },
3436  { CHUNK_ID_ISRC, 128 },
3437  { CHUNK_ID_ISRF, 128 },
3438  { CHUNK_ID_ITCH, 128 },
3439  { 0, 0 }
3440  };
3441 
3442  File::File() : DLS::File() {
3443  bAutoLoad = true;
3444  *pVersion = VERSION_3;
3445  pGroups = NULL;
3446  pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3447  pInfo->ArchivalLocation = String(256, ' ');
3448 
3449  // add some mandatory chunks to get the file chunks in right
3450  // order (INFO chunk will be moved to first position later)
3454 
3455  GenerateDLSID();
3456  }
3457 
3458  File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3459  bAutoLoad = true;
3460  pGroups = NULL;
3461  pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3462  }
3463 
3465  if (pGroups) {
3466  std::list<Group*>::iterator iter = pGroups->begin();
3467  std::list<Group*>::iterator end = pGroups->end();
3468  while (iter != end) {
3469  delete *iter;
3470  ++iter;
3471  }
3472  delete pGroups;
3473  }
3474  }
3475 
3477  if (!pSamples) LoadSamples(pProgress);
3478  if (!pSamples) return NULL;
3479  SamplesIterator = pSamples->begin();
3480  return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3481  }
3482 
3484  if (!pSamples) return NULL;
3485  SamplesIterator++;
3486  return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3487  }
3488 
3497  if (!pSamples) LoadSamples();
3500  // create new Sample object and its respective 'wave' list chunk
3501  RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3502  Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3503 
3504  // add mandatory chunks to get the chunks in right order
3505  wave->AddSubChunk(CHUNK_ID_FMT, 16);
3506  wave->AddSubList(LIST_TYPE_INFO);
3507 
3508  pSamples->push_back(pSample);
3509  return pSample;
3510  }
3511 
3521  void File::DeleteSample(Sample* pSample) {
3522  if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3523  SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3524  if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3525  if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3526  pSamples->erase(iter);
3527  delete pSample;
3528 
3529  SampleList::iterator tmp = SamplesIterator;
3530  // remove all references to the sample
3531  for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3532  instrument = GetNextInstrument()) {
3533  for (Region* region = instrument->GetFirstRegion() ; region ;
3534  region = instrument->GetNextRegion()) {
3535 
3536  if (region->GetSample() == pSample) region->SetSample(NULL);
3537 
3538  for (int i = 0 ; i < region->DimensionRegions ; i++) {
3539  gig::DimensionRegion *d = region->pDimensionRegions[i];
3540  if (d->pSample == pSample) d->pSample = NULL;
3541  }
3542  }
3543  }
3544  SamplesIterator = tmp; // restore iterator
3545  }
3546 
3548  LoadSamples(NULL);
3549  }
3550 
3551  void File::LoadSamples(progress_t* pProgress) {
3552  // Groups must be loaded before samples, because samples will try
3553  // to resolve the group they belong to
3554  if (!pGroups) LoadGroups();
3555 
3556  if (!pSamples) pSamples = new SampleList;
3557 
3558  RIFF::File* file = pRIFF;
3559 
3560  // just for progress calculation
3561  int iSampleIndex = 0;
3562  int iTotalSamples = WavePoolCount;
3563 
3564  // check if samples should be loaded from extension files
3565  int lastFileNo = 0;
3566  for (int i = 0 ; i < WavePoolCount ; i++) {
3567  if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3568  }
3569  String name(pRIFF->GetFileName());
3570  int nameLen = name.length();
3571  char suffix[6];
3572  if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3573 
3574  for (int fileNo = 0 ; ; ) {
3575  RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3576  if (wvpl) {
3577  unsigned long wvplFileOffset = wvpl->GetFilePos();
3578  RIFF::List* wave = wvpl->GetFirstSubList();
3579  while (wave) {
3580  if (wave->GetListType() == LIST_TYPE_WAVE) {
3581  // notify current progress
3582  const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3583  __notify_progress(pProgress, subprogress);
3584 
3585  unsigned long waveFileOffset = wave->GetFilePos();
3586  pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3587 
3588  iSampleIndex++;
3589  }
3590  wave = wvpl->GetNextSubList();
3591  }
3592 
3593  if (fileNo == lastFileNo) break;
3594 
3595  // open extension file (*.gx01, *.gx02, ...)
3596  fileNo++;
3597  sprintf(suffix, ".gx%02d", fileNo);
3598  name.replace(nameLen, 5, suffix);
3599  file = new RIFF::File(name);
3600  ExtensionFiles.push_back(file);
3601  } else break;
3602  }
3603 
3604  __notify_progress(pProgress, 1.0); // notify done
3605  }
3606 
3608  if (!pInstruments) LoadInstruments();
3609  if (!pInstruments) return NULL;
3610  InstrumentsIterator = pInstruments->begin();
3611  return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3612  }
3613 
3615  if (!pInstruments) return NULL;
3617  return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3618  }
3619 
3627  Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3628  if (!pInstruments) {
3629  // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3630 
3631  // sample loading subtask
3632  progress_t subprogress;
3633  __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3634  __notify_progress(&subprogress, 0.0f);
3635  if (GetAutoLoad())
3636  GetFirstSample(&subprogress); // now force all samples to be loaded
3637  __notify_progress(&subprogress, 1.0f);
3638 
3639  // instrument loading subtask
3640  if (pProgress && pProgress->callback) {
3641  subprogress.__range_min = subprogress.__range_max;
3642  subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3643  }
3644  __notify_progress(&subprogress, 0.0f);
3645  LoadInstruments(&subprogress);
3646  __notify_progress(&subprogress, 1.0f);
3647  }
3648  if (!pInstruments) return NULL;
3649  InstrumentsIterator = pInstruments->begin();
3650  for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3651  if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3653  }
3654  return NULL;
3655  }
3656 
3665  if (!pInstruments) LoadInstruments();
3667  RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3668  RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3669 
3670  // add mandatory chunks to get the chunks in right order
3671  lstInstr->AddSubList(LIST_TYPE_INFO);
3672  lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3673 
3674  Instrument* pInstrument = new Instrument(this, lstInstr);
3675  pInstrument->GenerateDLSID();
3676 
3677  lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3678 
3679  // this string is needed for the gig to be loadable in GSt:
3680  pInstrument->pInfo->Software = "Endless Wave";
3681 
3682  pInstruments->push_back(pInstrument);
3683  return pInstrument;
3684  }
3685 
3702  Instrument* instr = AddInstrument();
3703  instr->CopyAssign(orig);
3704  return instr;
3705  }
3706 
3715  void File::DeleteInstrument(Instrument* pInstrument) {
3716  if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3717  InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3718  if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3719  pInstruments->erase(iter);
3720  delete pInstrument;
3721  }
3722 
3724  LoadInstruments(NULL);
3725  }
3726 
3729  RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3730  if (lstInstruments) {
3731  int iInstrumentIndex = 0;
3732  RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3733  while (lstInstr) {
3734  if (lstInstr->GetListType() == LIST_TYPE_INS) {
3735  // notify current progress
3736  const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3737  __notify_progress(pProgress, localProgress);
3738 
3739  // divide local progress into subprogress for loading current Instrument
3740  progress_t subprogress;
3741  __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3742 
3743  pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3744 
3745  iInstrumentIndex++;
3746  }
3747  lstInstr = lstInstruments->GetNextSubList();
3748  }
3749  __notify_progress(pProgress, 1.0); // notify done
3750  }
3751  }
3752 
3756  void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3758  if (!_3crc) return;
3759 
3760  // get the index of the sample
3761  int iWaveIndex = -1;
3762  File::SampleList::iterator iter = pSamples->begin();
3763  File::SampleList::iterator end = pSamples->end();
3764  for (int index = 0; iter != end; ++iter, ++index) {
3765  if (*iter == pSample) {
3766  iWaveIndex = index;
3767  break;
3768  }
3769  }
3770  if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3771 
3772  // write the CRC-32 checksum to disk
3773  _3crc->SetPos(iWaveIndex * 8);
3774  uint32_t tmp = 1;
3775  _3crc->WriteUint32(&tmp); // unknown, always 1?
3776  _3crc->WriteUint32(&crc);
3777  }
3778 
3780  if (!pGroups) LoadGroups();
3781  // there must always be at least one group
3782  GroupsIterator = pGroups->begin();
3783  return *GroupsIterator;
3784  }
3785 
3787  if (!pGroups) return NULL;
3788  ++GroupsIterator;
3789  return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3790  }
3791 
3798  Group* File::GetGroup(uint index) {
3799  if (!pGroups) LoadGroups();
3800  GroupsIterator = pGroups->begin();
3801  for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3802  if (i == index) return *GroupsIterator;
3803  ++GroupsIterator;
3804  }
3805  return NULL;
3806  }
3807 
3809  if (!pGroups) LoadGroups();
3810  // there must always be at least one group
3812  Group* pGroup = new Group(this, NULL);
3813  pGroups->push_back(pGroup);
3814  return pGroup;
3815  }
3816 
3826  void File::DeleteGroup(Group* pGroup) {
3827  if (!pGroups) LoadGroups();
3828  std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3829  if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3830  if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3831  // delete all members of this group
3832  for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3833  DeleteSample(pSample);
3834  }
3835  // now delete this group object
3836  pGroups->erase(iter);
3837  delete pGroup;
3838  }
3839 
3851  if (!pGroups) LoadGroups();
3852  std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3853  if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3854  if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3855  // move all members of this group to another group
3856  pGroup->MoveAll();
3857  pGroups->erase(iter);
3858  delete pGroup;
3859  }
3860 
3862  if (!pGroups) pGroups = new std::list<Group*>;
3863  // try to read defined groups from file
3865  if (lst3gri) {
3866  RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3867  if (lst3gnl) {
3868  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3869  while (ck) {
3870  if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3871  if (pVersion && pVersion->major == 3 &&
3872  strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3873 
3874  pGroups->push_back(new Group(this, ck));
3875  }
3876  ck = lst3gnl->GetNextSubChunk();
3877  }
3878  }
3879  }
3880  // if there were no group(s), create at least the mandatory default group
3881  if (!pGroups->size()) {
3882  Group* pGroup = new Group(this, NULL);
3883  pGroup->Name = "Default Group";
3884  pGroups->push_back(pGroup);
3885  }
3886  }
3887 
3899  bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3900 
3902 
3903  // first update base class's chunks
3905 
3906  if (newFile) {
3907  // INFO was added by Resource::UpdateChunks - make sure it
3908  // is placed first in file
3910  RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3911  if (first != info) {
3912  pRIFF->MoveSubChunk(info, first);
3913  }
3914  }
3915 
3916  // update group's chunks
3917  if (pGroups) {
3918  std::list<Group*>::iterator iter = pGroups->begin();
3919  std::list<Group*>::iterator end = pGroups->end();
3920  for (; iter != end; ++iter) {
3921  (*iter)->UpdateChunks();
3922  }
3923 
3924  // v3: make sure the file has 128 3gnm chunks
3925  if (pVersion && pVersion->major == 3) {
3927  RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3928  for (int i = 0 ; i < 128 ; i++) {
3929  if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3930  if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3931  }
3932  }
3933  }
3934 
3935  // update einf chunk
3936 
3937  // The einf chunk contains statistics about the gig file, such
3938  // as the number of regions and samples used by each
3939  // instrument. It is divided in equally sized parts, where the
3940  // first part contains information about the whole gig file,
3941  // and the rest of the parts map to each instrument in the
3942  // file.
3943  //
3944  // At the end of each part there is a bit map of each sample
3945  // in the file, where a set bit means that the sample is used
3946  // by the file/instrument.
3947  //
3948  // Note that there are several fields with unknown use. These
3949  // are set to zero.
3950 
3951  int sublen = pSamples->size() / 8 + 49;
3952  int einfSize = (Instruments + 1) * sublen;
3953 
3955  if (einf) {
3956  if (einf->GetSize() != einfSize) {
3957  einf->Resize(einfSize);
3958  memset(einf->LoadChunkData(), 0, einfSize);
3959  }
3960  } else if (newFile) {
3961  einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3962  }
3963  if (einf) {
3964  uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3965 
3966  std::map<gig::Sample*,int> sampleMap;
3967  int sampleIdx = 0;
3968  for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3969  sampleMap[pSample] = sampleIdx++;
3970  }
3971 
3972  int totnbusedsamples = 0;
3973  int totnbusedchannels = 0;
3974  int totnbregions = 0;
3975  int totnbdimregions = 0;
3976  int totnbloops = 0;
3977  int instrumentIdx = 0;
3978 
3979  memset(&pData[48], 0, sublen - 48);
3980 
3981  for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3982  instrument = GetNextInstrument()) {
3983  int nbusedsamples = 0;
3984  int nbusedchannels = 0;
3985  int nbdimregions = 0;
3986  int nbloops = 0;
3987 
3988  memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3989 
3990  for (Region* region = instrument->GetFirstRegion() ; region ;
3991  region = instrument->GetNextRegion()) {
3992  for (int i = 0 ; i < region->DimensionRegions ; i++) {
3993  gig::DimensionRegion *d = region->pDimensionRegions[i];
3994  if (d->pSample) {
3995  int sampleIdx = sampleMap[d->pSample];
3996  int byte = 48 + sampleIdx / 8;
3997  int bit = 1 << (sampleIdx & 7);
3998  if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3999  pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4000  nbusedsamples++;
4001  nbusedchannels += d->pSample->Channels;
4002 
4003  if ((pData[byte] & bit) == 0) {
4004  pData[byte] |= bit;
4005  totnbusedsamples++;
4006  totnbusedchannels += d->pSample->Channels;
4007  }
4008  }
4009  }
4010  if (d->SampleLoops) nbloops++;
4011  }
4012  nbdimregions += region->DimensionRegions;
4013  }
4014  // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4015  // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4016  store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4017  store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4018  store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4019  store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4020  store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4021  store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4022  // next 8 bytes unknown
4023  store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4024  store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4025  // next 4 bytes unknown
4026 
4027  totnbregions += instrument->Regions;
4028  totnbdimregions += nbdimregions;
4029  totnbloops += nbloops;
4030  instrumentIdx++;
4031  }
4032  // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4033  // store32(&pData[0], sublen);
4034  store32(&pData[4], totnbusedchannels);
4035  store32(&pData[8], totnbusedsamples);
4036  store32(&pData[12], Instruments);
4037  store32(&pData[16], totnbregions);
4038  store32(&pData[20], totnbdimregions);
4039  store32(&pData[24], totnbloops);
4040  // next 8 bytes unknown
4041  // next 4 bytes unknown, not always 0
4042  store32(&pData[40], pSamples->size());
4043  // next 4 bytes unknown
4044  }
4045 
4046  // update 3crc chunk
4047 
4048  // The 3crc chunk contains CRC-32 checksums for the
4049  // samples. The actual checksum values will be filled in
4050  // later, by Sample::Write.
4051 
4053  if (_3crc) {
4054  _3crc->Resize(pSamples->size() * 8);
4055  } else if (newFile) {
4056  _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4057  _3crc->LoadChunkData();
4058 
4059  // the order of einf and 3crc is not the same in v2 and v3
4060  if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4061  }
4062  }
4063 
4079  void File::SetAutoLoad(bool b) {
4080  bAutoLoad = b;
4081  }
4082 
4088  return bAutoLoad;
4089  }
4090 
4091 
4092 
4093 // *************** Exception ***************
4094 // *
4095 
4096  Exception::Exception(String Message) : DLS::Exception(Message) {
4097  }
4098 
4100  std::cout << "gig::Exception: " << Message << std::endl;
4101  }
4102 
4103 
4104 // *************** functions ***************
4105 // *
4106 
4113  return PACKAGE;
4114  }
4115 
4121  return VERSION;
4122  }
4123 
4124 } // namespace gig